A SimILS-Based Methodology for a Portfolio Optimization Problem with Stochastic Returns
نویسندگان
چکیده
Combinatorial optimization has been a workhorse of financial and risk management, and it has spawned a large number of real-life applications. Prominent in this body of research is the mean-variance efficient frontier (MVEF) that emanates from the portfolio optimization problem (POP), pioneered by Harry Markowitz. A textbook version of POP minimizes risk for a given expected return on a portfolio of assets by setting the proportions of those assets. Most authors deal with the variability of returns by employing expected values. In contrast, we propose a simILS-based methodology (i.e., one extending the Iterated Local Search metaheuristic by integrating simulation), in which returns are modeled as random variables following specific probability distributions. Underlying simILS is the notion that the best solution for a scenario with expected values may have poor performance in a dynamic world.
منابع مشابه
Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملRobustness in portfolio optimization based on minimax regret approach
Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...
متن کاملA Comparison of Stochastic Search Heuristics for Portfolio Optimization
Modern portfolio theory is based on a rational investor choosing the proportions of assets in a portfolio so as to minimize risk and maximize the expected return. In this paper, we investigate the applicability of different stochastic search heuristics to the problem of finding the optimum portfolio. We compare their performance on two problems with known solutions. 1. Portfolio Optimization Gi...
متن کاملMulti-period project portfolio selection under risk considerations and stochastic income
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016